

Antennas & Wave Propagation

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 4th year communication 2013-2014

Sheet (5)

- 1. Estimate the relative field pattern (equation) of an array of two identical isotropic point sources in phase, spaced $\lambda/2$ apart along the z axis. Then calculate the directivity.
- 2. Drive the relative field pattern (equation) of an array of two identical isotropic point sources in phase opposition, spaced $\lambda/2$ apart along the z axis. Then calculate the directivity.
- **3.**Derive an expression for $E(\phi)$ for an array of 4 identical isotropic point sources arranged as in Fig. 1. The spacing *d* between each source and the center point of the array is $3\lambda/8$. Sources 1 and 2 are in-phase, and sources 3 and 4 in opposite phase with respect to 1 and 2.

REPORT

1. Show that the directivity for an array of two identical isotropic point sources in phase and spaced a distance *d* is given by

$$D = \frac{2}{1 + (\lambda/2\pi d) \sin(2\pi d/\lambda)}.$$

Good Luck.

Dr. Gehan Sami